Bayesian log‐Gaussian Cox process regression: applications to meta‐analysis of neuroimaging working memory studies

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuroimaging studies of working memory: a meta-analysis.

We performed meta-analyses on 60 neuroimaging (PET and fMRI) studies of working memory (WM), considering three types of storage material (spatial, verbal, and object), three types of executive function (continuous updating of WM, memory for temporal order, and manipulation of information in WM), and interactions between material and executive function. Analyses of material type showed the expec...

متن کامل

Mechanisms of Verbal Working Memory Revealed by Neuroimaging Studies

is provided in screen-viewable form for personal use only by members of MIT CogNet. Unauthorized use or dissemination of this information is expressly forbidden. If you have any questions about this material, please contact [email protected].

متن کامل

Bayesian Rician Regression for Neuroimaging

It is well-known that data from diffusion weighted imaging (DWI) follow the Rician distribution. The Rician distribution is also relevant for functional magnetic resonance imaging (fMRI) data obtained at high temporal or spatial resolution. We propose a general regression model for non-central χ (NC-χ) distributed data, with the heteroscedastic Rician regression model as a prominent special cas...

متن کامل

Neuroimaging analyses of human working memory.

We review a program of research that uses neuroimaging techniques to determine the functional and neural architecture of human working memory. A first set of studies indicates that verbal working memory includes a storage component, which is implemented neurally by areas in the left-hemisphere posterior parietal cortex, and a subvocal rehearsal component, which is implemented by left-hemisphere...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Royal Statistical Society: Series C (Applied Statistics)

سال: 2018

ISSN: 0035-9254,1467-9876

DOI: 10.1111/rssc.12295